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Abstract— Interstitial Lung Disease (ILD) is a prevalent and progressive respiratory condition that imposes a significant global health 

burden. Accurate diagnosis of ILD is vital for effective management and intervention strategies. In this paper, we present a novel 

classification approach for ILD using a Vision Transformer (ViT) model. Vision Transformer (ViT) presents an innovative deep 

learning framework that has consistently showcased exceptional performance across a wide range of computer vision applications. We 

aim to explore its applicability in the domain of medical imaging for ILD diagnosis. The proposed method leverages a dataset comprising 

chest X-rays and CT scans from patients with ILD, as well as healthy controls. Our methodology incorporates self-attention mechanisms 

to capture long-range dependencies within the images. This enables the model to effectively discern relevant patterns and features. By 

fine-tuning the pre-trained ViT model on this dataset, we employ transfer learning to adapt the model for the specific task of ILD 

classification. Our objective is to attain a notable accuracy without a substantial increase in parameter usage during the fine-tuning 

process. Accurate early-stage diagnosis of ILD through non-invasive imaging techniques holds the potential for timely interventions and 

improved patient outcomes. Our findings underscore the capability of Vision Transformers as a potent tool in medical image analysis. 

This research paves the way for enhanced diagnostic capabilities in the field of respiratory medicine. 

 

Index Terms— Vision Transformer, Deep learning, High Resolution Computed Tomography (HRCT) scans, Medical Imaging, 

Interstitial Lung Disease (ILD). 

 

I. INTRODUCTION 

Lung diseases [1] pose a formidable challenge to global 

public health, with their prevalence steadily increasing due to 

various factors, including smoking, environmental pollution, 

and an aging population. The insidious nature of many lung 

diseases, often presenting with minimal or no symptoms until 

they reach advanced stages, underscores the critical 

importance of early detection methods. Effective early 

detection strategies, such as screening programs and 

heightened awareness campaigns, are essential to address this 

pressing public health concern and enhance patient 

outcomes. 

Medical imaging research mainly focuses on determine the 

presence of interstitial lung disease (ILD). [2] ILD 

encompasses a diverse array of disorders characterized by 

inflammation and fibrosis of the lung’s interstitial tissue, 

leading to compromised lung function and a diminished 

quality of life. The primary focus of this research is to employ 

state-of-the-art classifiers to detect ILD, by utilizing 

Computed Tomography (CT) scans of the lungs. 

The three main objectives of this paper are: 

1) To provide a detailed examination of the current 

classification models on ILD. 

2) To elucidate the potential of CT scans in the detection 

of ILD, highlighting their role in identifying subtle 

abnormalities and facilitating timely intervention. 

3) To discuss the emerging role of vision transformers, 

originally designed for image classification tasks, in 

the realm of medical imaging, particularly their 

application in the detection of ILD. 

 

(a) Vision Transformers (ViTs): 

Computer vision has witnessed a groundbreaking 

paradigm shift with the emergence of Vision Transformers 

(ViTs) [3]. While convolutional neural networks (CNNs) 

have long been the cornerstone of image analysis tasks, 

Vision Transformers represent a transformative approach to 

image understanding and classification. At its core, a Vision 

Transformer leverages the selfattention mechanism, allowing 

it to weigh the importance of different parts of an image when 

making predictions. This mechanism enables Vision 

Transformers to process images holistically, considering the 

relationships between all pixels or patches rather than relying 

solely on local features as in traditional CNNs [4]. As a 

result, Vision Transformers excel at capturing complex and 

context-rich information within images, making them 

well-suited for a wide range of computer vision tasks. 

(b) CT Scans: 

Medical imaging has undergone a remarkable evolution, 

revolutionizing the way healthcare professionals diagnose 

and manage a spectrum of diseases. Among the myriad of 

imaging modalities, Computed Tomography (CT) scans have 

emerged as vital in the realm of radiology and clinical 

diagnostics. [5] CT scans provide an unparalleled window 

into the human body, offering detailed, cross-sectional 

images of internal structures with exceptional spatial 

resolution. In this paper, we underscore the paramount 

importance of CT scans in the ILD detection, 

characterization, and management of a diverse array of 

medical conditions. 

Lung diseases, including ILD, are a matter of significant 

concern to healthcare professionals, researchers, and 
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policymakers. By synthesizing existing research findings, 

clinical insights, and cutting-edge technological 

advancements, this research aims to serve as a valuable 

resource for those involved in the management and 

comprehension of ILD. Ultimately, the knowledge presented 

herein can contribute to the enhancement of patient care and 

the amelioration of outcomes for individuals grappling with 

the complexities of ILD. 

The subsequent sections of this paper will delve into the 

multifaceted landscape of ILD, exploring its diagnostic 

approaches, CT scan image exploration, preprocessing of CT 

scan images and usage of state-of-the-art classifier vision 

transformer on ILD database. Furthermore, we will elucidate 

the promising role of vision transformers and their potential 

to augment diagnostic accuracy and efficiency. In doing so, 

we aspire to highlight the significance of innovative 

technologies in the field of medical imaging, with a specific 

focus on the realm of lung disease detection.. 

II. RELATEDWORK 

Lung diseases are prominent health issues that affect 

millions of people worldwide. These diseases can range from 

acute respiratory infections, such as the common cold and 

influenza, to chronic conditions like chronic obstructive 

pulmonary disease (COPD), as well as more severe and 

lifethreatening illnesses such as lung cancer and interstitial 

lung diseases (ILDs). The two factors leading lung diseases 

to become a prominent disease are high prevalence and 

leading causes of death. Lung diseases are prevalent globally, 

affecting people of all ages. Respiratory infections like 

pneumonia and bronchitis are common, especially in children 

and the elderly contributing to high prevalence. There are 

three primary categories of lung diseases [6], namely Airway 

diseases, Lung tissue disorders, and Lung circulation 

conditions. This article focuses on Interstitial Lung Diseases 

(ILD), a specific subset of lung ailments that primarily 

impact the interstitial tissue of the lungs, which surrounds 

and supports the air sacs (alveoli). ILD encompasses over 

200 distinct lung disorders, all of which share common 

characteristics like lung tissue inflammation and scarring, 

known as fibrosis. Some well-known ILDs include idiopathic 

pulmonary fibrosis (IPF), sarcoidosis, and ILD associated 

with connective tissue diseases. 

Medical imaging is of utmost importance in the diagnosis 

and treatment of ILD, as it involves capturing images of the 

body’s internal structures for medical purposes. In their 

study, H. Mary Shyni et al. [7] emphasized the significance of 

CT and X-ray scans in examining the lung interstitium. 

Medical imaging encompasses a range of techniques, such as 

X-ray imaging, computed tomography (CT), nuclear 

medicine, and ultrasound, to aid in patient care. Image 

processing techniques are applied in medicine for various 

purposes, including segmentation and texture analysis for 

disease identification, image registration, and fusion, 

telemedicine, and compression for remote image 

communication. [8] [9] uses MRI images to detect diseases. 

[10] uses MRI images to detect brain tumour It discusses the 

use of deep learning models, including IVX16, for multiclass 

classification of brain tumors in MRI images, aiming to 

improve accuracy and reliability compared to traditional 

methods, with a focus on explaining model performance and 

exploring Vision Transformer (ViT) models. Another 

medical images are xrays. [11] uses X - Ray images to 

classify different Lung Disease This paper presents different 

preprocessing methods like Intensity Normalisation, 

Gaussian Filter and few data Augmentation methods. The last 

kind of imaging technique is CT or HRCT scans. [4] analyzes 

interstitial lung diseases from CT images. The proposed 

lightweight U-Net architecture maintained segmentation 

performance compared to the original U-Net while being 

more computationally efficient. 

ContrastLimited Adaptive Histogram Equalization 

(CLAHE) is an image processing technique that is used to 

enhance the contrast and improve the visual quality of digital 

images. It is particularly useful when dealing with images 

that have variations in illumination and contrast across 

different regions. CLAHE works by dividing the image into 

smaller blocks or tiles and then applying a histogram 

equalization technique to each block individually. This 

adaptive approach ensures that the local contrast in each 

region of the image is improved while preventing the 

amplification of noise or artifacts in the process. By limiting 

the contrast enhancement, CLAHE prevents the 

over-amplification of noise in regions with low contrast. 

Janan Arslan et al in [12] applied CLAHE preprocessing 

technique for lesion segmentation. 

Training the model with a diverse dataset improved its 

ability to cope with severe pathological regions. Francisco 

Silva et al in [13] study highlights the need for diverse and 

representative datasets to build robust segmentation tools for 

lung analysis. This particular paper discusses in depth about 

the ILD but few points should be improved like Tumor 

regions were sometimes included in lung mask predictions 

due to differences in contouring guidelines among datasets. 

This needs improvement for accurate tumor inclusion. The 

lightweight architecture’s performance was evaluated mainly 

on publicly available datasets. Further validation on a wider 

range of datasets and clinical scenarios is needed. Future 

work could focus on refining the model’s performance for 

accurately segmenting tumor regions and exploring more 

advanced architectures to address specific challenges in lung 

CT segmentation. [14] proposes lung ultrasound surface 

wave elastography (LUSWE) a technique of lung ultrasound 

surface wave elastography for measuring lung tissue 

stiffness. ILD occurs when the lung’s interstitial tissue is 

affected. ILD is a collection of more than 200 diseases and 

one specific disease is discussed in [2] a comprehensive 

guide on connective tissue disease-associated interstitial lung 
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disease (CTDILD), developed through collaboration between 

respiratory and rheumatology experts, aiming to provide 

evidence-based recommendations and address the 

heterogeneous nature of CTDILD for improved patient care 

and future research. Hossain et al in [15] employed vision 

transformer and other deep learning techniques on MRI 

images to detect brain tumour. To detect ILD we are 

proposing [16] Vision transformer(ViT) It is built upon the 

transformer architecture, which was initially developed for 

sequence-to-sequence tasks in NLP. The transformer 

architecture introduced the concept of selfattention 

mechanisms, which allows the model to weigh the 

importance of different parts of the input sequence when 

making predictions. This self-attention mechanism is a 

crucial component of Vision Transformers. Its components 

include Image Patching, Positional Encoding, Tokenization, 

MultiHead Self-Attention, Feed-Forward Layers, Layer 

Normalization, Output Layer . [17] Vision Transformers are 

often pre-trained on large datasets, such as ImageNet, using 

selfsupervised learning techniques. After pre-training, they 

can be fine-tuned on smaller, task-specific datasets for 

specific computer vision tasks, such as object detection or 

image segmentation. 

III. MATERIAL AND METHODOLOGY 

A. Dataset Description 

The research dataset employed in this study comprises a 

collection of CT scans of lungs in DICOM format [18] 

obtained from individuals diagnosed with Interstitial Lung 

Disease (ILD). These images are converted from DICOM to 

png format as gray-scale images. ILD encompasses a diverse 

group of lung disorders characterized by inflammation and 

fibrotic scarring within the lung interstitium. The dataset 

primarily focuses on three specific ILD subtypes, namely 

Interstitial Pneumonia, Adenocarcinoma, and Scleroderma. 

In addition to these ILD-afflicted cases, the dataset also 

includes CT scans of lung images from individuals who do 

not exhibit any signs of ILD, representing the control or 

normal group in this research. The dataset is divided with 

70% data for training, 10% for validation, and 20% for 

testing purposes. 

 

 

 
Fig. 1. Workflow of proposed methodology 

B. Image Preprocessing 

1) Image Enhancement: 

 Intensity Normalisation: We employed the Min-Max 

Scaling Intensity Normalization preprocessing technique 

[19] to transform pixel intensities within a specified range. 

In the context of lung gray-scale images, this technique 

ensures that all images within a dataset share a consistent 

intensity scale. Through this technique, pixel intensities are 

confined within the minimum (0) and maximum (1) values, 

effectively standardizing the intensity scale. 

The Min-Max Scaling formula is expressed as: 

 

where 

Np represents the Normalized pixel value. 

Op denotes the Original pixel value. Mi is the maximum 

intensity, which is set to 1. mi is the minimum intensity, 

which is set to 0. 

 Contrast Enhancement 

The inherent challenge in medical imaging lies in the 

variations in image contrast and quality. Inadequate contrast 

and visibility of anatomical structures can hinder the 

diagnostic process. Contrast enhancement improves the 

visual quality and interpretability of images. It aims to 

increase the distinction between different regions or 

structures within an image, making them more discernible. 

ILD-related abnormalities, such as fibrotic changes and 

ground-glass opacities, can be subtle and challenging to 

identify in radiological images. Histogram Equalization can 

reveal these abnormalities with greater clarity, improving 

diagnostic accuracy. Figure 4 visually illustrates the 

profound impact of Histogram Equalization as an image 

preprocessing technique for the detection of Interstitial Lung 

Disease (ILD). ILD detection demands a meticulous analysis 

of lung images, as even subtle abnormalities in the interstitial 

tissue can hold critical diagnostic information. In our study, 

we employed Histogram Equalization to enhance image 

contrast, thereby revealing intricate details that might 

otherwise remain hidden. The histogram comparison graph 

showcases the transformation of pixel intensity values before 

and after Histogram Equalization. The elevation in the graph 

represents the magnitude of the increase in pixel intensity, a 

crucial factor in identifying scarring and anomalies within the 

interstitial tissue. 

 Resizing and Cropping In addition to Histogram 

Equalization, we employed resizing and cropping as 

essential preprocessing techniques to further optimize the 

CT images for ILD detection. 

Resize: One of the initial steps in our preprocessing 

pipeline involves resizing the medical images. Through this 
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images are uniformly adjusted to a specified dimension, 

ensuring consistency in size. In our study, we resized the 

images to a dimension of 256x256 pixels. This not only 

simplifies the computational load but also enables 

compatibility with neural networks that require a fixed input 

size. 

 
Fig. 2. Before applying Histogram Equalization 

 
Fig. 3. After applying Histogram Equalization 

Fig. 4. Image Intensity graph 

Cropping: Cropping is crucial for isolating the regions of 

interest within the images and eliminating unnecessary 

information from the periphery. By center-cropping the 

resized images to a dimension of 224x224 pixels, we 

concentrate on the core features and structures that are most 

relevant to ILD detection. 

Resizing and cropping ensure that images adhere to a 

standardized format, facilitating the subsequent analysis and 

interpretation of ILD-related patterns. By combining these 

techniques with Histogram Equalization, we offer a 

comprehensive approach to image preparation that is geared 

towards optimizing the performance of ILD detection 

models. 

2) Data Augmentation:  

Given the limited availability of ILD images in our dataset, 

data augmentation emerged as a crucial strategy to amplify 

the diversity of training samples and enhance the robustness 

of our ILD detection model. 

 Horizontal and Vertical Flipping: Flipping operations are 

fundamental invariance augmentations that simulate 

changes in the orientation of the patient. By applying 

horizontal and vertical flips, the model learns to recognize 

features and patterns regardless of their spatial 

orientation. These augmentations contribute to improved 

generalization, making the model less sensitive to image 

orientation and better equipped to handle images captured 

in different settings. Therefore, the model becomes 

spatial invariant. 

 Color Jittering: ColorJitter operation introduces random 

variations in image color and brightness, replicating 

variations in illumination and color balance frequently 

encountered in real-world medical images. This 

augmentation technique enhances the model’s 

adaptability to varying imaging conditions, ultimately 

making the model invariant to variations in image color 

and brightness. 

 Random Erasing: It is an effective technique to simulate 

occlusions and artifacts within the images. By randomly 

removing portions of the image, the model becomes more 

robust to the presence of unexpected noise or clutter in the 

medical images. This augmentation can help the model 

discern relevant information from potentially distracting 

elements, thus enhancing its diagnostic accuracy. 

The total increase in the effective amount of training data 

is primarily due to horizontal and vertical flips. Overall, the 

percent increase in the effective amount of training data is 

approximately 200% compared to the original data. 

C. Classification 

Before performing classification techniques the 

preprocessed data has to be divided. We divided our dataset 

into three distinct parts: training, validation, and testing. This 

division was based on a 70-20-10 rule. 

Training Phase: The training phase serves as the 

foundational stage of our model’s learning journey. During 

this phase, the model is exposed to a substantial portion of the 

data. The process begins with the model making predictions 

based on its current understanding of the data. These 

predictions are then compared to the ground truth labels in 

the training data, resulting in a measure of how well or poorly 

the model is performing. This measure, often referred to as 

”loss,” is used to update the model’s internal parameters in a 

way that minimizes the error between predictions and actual 

labels. This is repeated for many rounds (known as epochs) 

until the model converges to a state where it accurately 

recognizes ILD in the images. 
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Validation Phase: The validation phase plays a pivotal role 

in monitoring the model’s performance and preventing 

overfitting. Here, a separate dataset (the validation set) is 

used to evaluate the model’s accuracy. The model’s 

performance on this validation set helps us fine-tune its 

parameters and hyperparameters, ensuring that it generalizes 

well to new, unseen data. 

Testing Phase: Finally, the testing phase assesses the 

model’s readiness for real-world application. It is completely 

independent of the training and validation data. The model’s 

performance is rigorously evaluated on the testing set, 

providing an unbiased measure of how well it can identify 

ILD in completely new images. 

Classification Models: To detect Interstitial Lung Disease 

(ILD), we used deep learning and transfer learning 

techniques. 

1) Deep Learning with ResNet50 and VGG16: We 

employed ResNet50 and VGG16, two well-known deep 

learning models, to help us classify lung images. While 

they performed decently, they didn’t quite reach the level 

of accuracy we were aiming for. 

2) Transfer Learning with DeiT-B: For even better results, 

we delved into transfer learning. We took a pre-trained 

model called DeiT-B (Data-Efficient Image 

Transformers) [20] and fine-tuned it for ILD detection. 

This involved keeping the model’s foundational layers 

frozen and then adding our own layers, like dropout and a 

linear layer, to handle the specific ILD classification task. 

The DeiT-B model, with this fine-tuning, showed great 

promise and delivered impressive results. The DeiT 

model is a convolution-free neural network architecture 

that uses self-attention mechanisms to process image 

data. Unlike traditional convolutional neural networks 

(convnets), which use convolutional layers to extract 

features from the input image, the DeiT model uses 

self-attention mechanisms to attend to different parts of 

the image and learn spatial relationships between them. 

In the DeiT model, the input image is first divided into a 

set of non-overlapping patches, which are then flattened and 

fed into the model as a sequence of tokens. Each token is 

associated with a learnable embedding vector, which is used 

to represent the corresponding image patch. The model then 

applies a stack of transformer blocks to the sequence of 

tokens, where each block contains a multi-head self-attention 

mechanism and a feedforward neural network. The 

self-attention mechanism allows the model to attend to 

different parts of the input image, while the feedforward 

network applies non-linear transformations to the attended 

features. The output of each transformer block is passed 

through a layer normalization and residual connection before 

being fed into the next block. 

By using self-attention mechanisms instead of 

convolutional layers, the DeiT model is able to capture 

longrange dependencies between different parts of the image, 

without being limited by the size of the convolutional kernel. 

This allows the model to learn more complex and abstract 

representations of the input image, leading to improved 

performance on image understanding tasks. Additionally, the 

DeiT model is more computationally efficient than convnets, 

since it does not require expensive convolutional operations. 

In this classification we used hard label distillation. It is a 

variant of knowledge distillation where the model is trained 

to match the hard decisions, rather than the full probability 

distribution. This is done by using the hard decision of the 

ground truth as a true label. The formula for the distillation 

objective function for hard label distillation is given by: 

where LCE is the cross-entropy loss, ψ is the softmax 

function, Zs is the logits of the student model, y is the ground 

truth label, and yhard is the hard decision of the teacher model. 

The multi-head self-attention mechanism allows the 

transformer to attend to different parts of the input image and 

capture long-range dependencies between patches. This is 

achieved by computing multiple attention heads in parallel, 

each with its own set of learned parameters. The outputs of 

these attention heads are concatenated and projected back to 

the original embedding dimension, resulting in a more 

expressive representation of the input image. 

By using the multi-head self-attention mechanism instead 

of CNNs, the vision transformer is able to achieve 

state-of-the-art performance on image understanding tasks 

with fewer parameters and less computation. This makes it a 

promising alternative to traditional CNNbased approaches, 

especially in scenarios where computational resources are 

limited. The formula for computing the attention weights in 

the multi-head self-attention mechanism is given by: 

 

where Q, K, and V are the query, key, and value matrices, 

respectively, and dk is the dimension of the key vectors. 

The feedforward network (FFN) is a sublayer of the 

transformer block that applies a non-linear transformation to 

the input vector. The formula for computing the output of the 

FFN is given by: FFN(x) = max(0,xW1 + b1)W2 + b2 where x is 

the input vector, W1, b1, W2, and b2 are learnable weight 

matrices and bias vectors, respectively. The FFN is used to 

introduce non-linearity into the transformer block and 

increase its expressive power. The layer normalization and 

residual connection are also sublayers of the transformer 

block. The formula for computing the output of the layer 

normalization and residual connection is given by: 

LayerNorm(x + Sublayer(x)) where Sublayer(x) is the output 

of the self-attention or feed-forward sublayer, and 

LayerNorm is a learnable normalization function. The layer 

normalization and residual connection are used to improve 

the stability and convergence of the transformer block during 

training. 

In general, the feed-forward network and layer 

normalization are used in the transformer block to introduce 
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non-linearity and improve the stability and convergence of 

the model during training. These sublayers are applied after 

the self-attention sublayer, which is responsible for capturing 

the dependencies between the input tokens. DeiT has the 

same architecture as ViT, except for the input token part, 

which includes an additional distillation token.The primary 

reason for choosing DeiT over the vanilla vision transformer 

is that ViT does not perform well when trained on limited 

data. However, DeiT overcomes this limitation through 

distillation. Since our dataset is not extensive, we preferred to 

choose DeiT, which is also computationally less demanding. 

 
Fig. 5. Validation curve of DeiT’s model 

Architecture: The DeiT model was trained for a total of 9 

epochs, achieving a validation accuracy of 93.65% and a 

validation loss of 0.321. During both the training and 

validation phases, the LabelSmoothingCrossEntropy loss 

function was utilized. 

N 

 LabelSmoothingCrossEntropy = −X(qi · log(pi)) (2) 

i=1 

In this formula: In this formula: 

1) We take the sum  over all classes (from 1 to N). 

2) For each class, we multiply the smoothed ground truth 

probability qi by the logarithm of the predicted probability 

pi. 

3) Finally, we negate the result to obtain the loss value. 

IV. RESULTS 

The Data-Efficient Image Transformers (DeiT) model, 

with fine-tuning for ILD detection, achieved an impressive 

accuracy of 91%. In comparison, ResNet50 and VGG16 

yielded accuracies of 87% and 56%, respectively. These 

results underscore the efficacy of DeiT as a powerful tool for 

ILD classification, particularly in cases where data 

availability is limited. The success of the DeiT model in 

achieving an accuracy of 91% in ILD classification is a result 

of several key factors. DeiT, a novel convolution-free neural 

network architecture, represents a significant departure from 

traditional convolutional neural networks (CNNs) used in 

image analysis. Instead of relying on convolutional layers to 

extract features, DeiT employs selfattention mechanisms, 

such as multi-head self-attention, to capture complex spatial 

relationships within the input images. This innovative 

approach allows the model to attend to different parts of the 

image, irrespective of the size of the convolutional kernel. As 

a result, DeiT can recognize intricate patterns and 

dependencies that may be vital for accurate ILD detection. 

Additionally, the DeiT model’s use of self-attention 

mechanisms provides an edge in capturing long-range 

dependencies between different parts of the image, enabling 

it to learn more abstract and complex representations of the 

input image. This capability is particularly crucial in the 

context of ILD detection, as it ensures the model can 

recognize subtle abnormalities within the interstitial tissue, 

even in the presence of variations in image quality and 

contrast. 

Furthermore, DeiT’s approach to handling input images, 

where they are divided into non-overlapping patches and 

processed as a sequence of tokens, allows for more flexible 

and adaptable image understanding. Each token is associated 

with a learnable embedding vector, facilitating the model’s 

adaptability to varying imaging conditions, including 

changes in orientation, illumination, and color balance. In 

essence, DeiT’s structure equips it to be invariant to 

variations in image color and brightness, which can be 

particularly challenging in the analysis of medical images. 

Another crucial aspect that contributed to DeiT’s 

outstanding performance is the fine-tuning process. By 

keeping the foundational layers of the model frozen and 

adding specific layers like dropout and a linear layer for ILD 

classification, the model was fine-tuned to excel in the 

context of this specific task. This fine-tuning process enabled 

DeiT to focus on the intricacies of ILD detection, making it 

more adept at recognizing the telltale signs of the disease in 

medical images. 

In essence, DeiT’s revolutionary architecture, combined 

with its capacity to capture long-range dependencies, adapt to 

variations in imaging conditions, and its fine-tune for ILD 

classification, made it the top performer in our study. These 

results emphasize the potential of innovative neural network 

architectures and the importance of tailoring models to the 

specific requirements of medical image analysis, shedding 

light on the path to more accurate and reliable ILD detection 

in clinical practice. 

The research dataset utilized in this study comprises a 

collection of CT scans of lungs in DICOM format from 

individuals diagnosed with Interstitial Lung Disease (ILD). 

The dataset was divided into three specific ILD subtypes, 

including Interstitial Pneumonia, Adenocarcinoma, and 

Scleroderma, and a control group of lung images from 

individuals without ILD. Our preprocessing techniques 

included Min-Max Scaling Intensity Normalization to 
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standardize pixel intensities and Histogram Equalization for 

enhanced image contrast. Additionally, resizing and cropping 

were applied to optimize the images for ILD detection. Data 

augmentation techniques such as horizontal and vertical 

flipping, color jittering, and random erasing were employed 

to enhance the diversity of training samples. These 

preprocessing methods significantly improved the quality 

and interpretability of the images. 

For classification, we divided the preprocessed data into 

training, validation, and testing sets. We employed various 

deep learning and transfer learning techniques. Notably, the 

Data-Efficient Image Transformers (DeiT) model, with 

finetuning for ILD detection, achieved an impressive 

accuracy of 91%. In comparison, ResNet50 and VGG16 

yielded accuracies of 87% and 56%, respectively. These 

results underscore the efficacy of DeiT as a powerful tool for 

ILD classification, particularly in cases where data 

availability is limited. 

V. CONCLUSION 

In conclusion, our research has made significant strides in 

the realm of Interstitial Lung Disease (ILD) detection 

through the utilization of deep learning and transfer learning 

techniques. While traditional deep learning models such as 

ResNet50 and VGG16 demonstrated commendable 

performance with accuracies of 87% and 56%, respectively, 

the real breakthrough came with the adoption of the 

Data-Efficient Image Transformers (DeiT) model, which 

delivered an outstanding accuracy of 91%. 

These results underscore the pivotal role of innovative 

neural network architectures in the realm of medical image 

analysis. The DeiT model’s distinct approach, centered 

around self-attention mechanisms, allows it to capture 

intricate spatial relationships and long-range dependencies 

within images, making it exceptionally well-suited for 

detecting subtle abnormalities in the interstitial tissue, even in 

the face of variations in image quality, contrast, and 

orientation. 

As we look ahead, one promising avenue for further 

enhancing ILD detection accuracy is the employment of 

HighResolution CT (HRCT) scans. While our research 

predominantly utilized standard CT scans, the incorporation 

of HRCT imaging promises to unlock even more intricate 

details. These enhanced details have the potential further to 

boost the accuracy of the meticulous DeiT model. The 

intricate and nuanced characteristics of HRCT images align 

well with the capabilities of DeiT, offering the prospect of 

achieving even greater accuracy in ILD detection. Future 

research endeavors may benefit significantly from the 

utilization of HRCT, propelling the field of ILD diagnosis 

and potentially revolutionizing the accuracy and reliability of 

this critical clinical practice. 
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